Surveying Historic Taxidermy Part 1: Goals and Parameters

Alongside the lightfastness testing described earlier in this blog, we are developing tools to support the efforts of other individuals and institutions seeking to preserve collections of historic mammalian taxidermy. To do this, we needed to deepen our understanding of the historic and modern materials and techniques used in creating these objects, the common condition issues affecting them, and methods of remediation, both historic and modern.

1194_2_detail face and mouth

Taxidermy viscacha specimen from the collection during condition surveying.

Working toward these aims, we conducted an inventory and condition survey of taxidermy in storage in the Department of Mammalogy of the American Museum of Natural History. This survey was intended to accomplish the goals set out above with the added benefit of providing the department with a searchable, data driven inventory of the entire mammalian taxidermy collection. This kind of inventory can serve as a basis for planning and decisions related to collection management and storage, loans, exhibits, and associated conservation needs.

The Department of Mammalogy is one of four departments in the Museum’s Division of Vertebrate Zoology Division. The department’s collection comprises more than 420,000 specimens from around the world, although only a tiny fraction of those in storage are taxidermy mounts. This fraction still represents about half of the mammal taxidermy at the Museum, with the other half on permanent display. These numbers should not be surprising: museum-quality taxidermy is costly to produce and limited in its scientific uses compared to materials such as study skins or skeletons. Instead, taxidermy is valued primarily for display, so it has been produced in relatively small numbers for specific exhibits over the years. Thus, the percentage of specimens on display versus in storage is much higher for taxidermy than it is for other materials that are more often used in scientific research. Among the Museum’s mammal taxidermy holdings are numerous examples from the founding collections that were acquired in 1869 and are now approaching 150 years old. How are these specimens holding up after so many years?


Project intern Caitlin Richeson examining taxidermy fruit bats in collection storage.

Over a period of four months we spent an average of two to three days per week surveying. We worked around visiting researchers and staff using temporary photography and examination stations in each room. Each specimen took five to 10 minutes to assess, depending on its complexity and accessibility. After opening every storage cabinet and pulling out every drawer to ensure that no specimen was overlooked, we assessed approximately 635 individual mounts in 30 mammalogy-collection storage spaces.


Project conservator Fran Ritchie examining a specimen at a temporary surveying station in collection storage.

Using a custom-built database, we tailored our survey parameters to record identifying information for each specimen, an assessment of its condition, and recommendations for treatment. If desired, the data collected can be exported in CSV and PDF file formats and then imported or attached to records in other existing databases, such as the EMu database system used by the Museum’s Division of Vertebrate Zoology.

Data gathered for each specimen included ‘identifying information’ such as:

  • Specimen Description – Basic taxonomic and locality information, as well as notes about special historical, scientific, or ecological significance
  • Current Storage Location – Building, floor, room, cabinet number(s), and cabinet label(s)
  • Transcriptions – Data from all labels and inscriptions, including taxonomy, catalog and other numbers, and other scientific or historical details
  • Digital Photograph(s) – An overall identifying photograph as well as details of specific condition or preparation issues, when appropriate

Survey database example entry (not actual specimen in the collection).

We evaluated the condition of each specimen, looking closely at the following elements:

  • Internal armature
  • Skin/hide
  • Fur/hair
  • Antlers/horns/hooves/nails/claws/teeth
  • Eyes
  • Finishing materials (for sculpting lips, nose, etc.)
  • Base
  • Specimen label

Summer intern Kelly McCauley using the survey database to examine a specimen in collection storage. Note the grey photography paper used to photograph each specimen.

Each specimen was given an overall condition summary, identifying it as Excellent, Good, Fair, or Poor, and further noting whether it is Stable or Unstable, based on the likelihood of existing damage worsening if left untreated.

In the final section of our survey, we recorded the nature and extent of any conservation treatment that would be required to make the specimen stable or suitable for exhibit, such as skin repairs, reconstruction, general grooming, dry cleaning, etc.

Together, all of this documentation will be used to guide decisions about how best to manage, store, and exhibit historic mammal taxidermy at the Museum, while offering supporting resources for the preservation of similar collections at other museums or sites.

Our next post will reveal some of the unique examples that we discovered during the survey.

featured image_2

It’s All In the Preparation: Part 2

With our sample set chosen, our substrate selected, and our sample mounts determined, we next needed to devise a process for applying the dyes. Since the ultimate treatment would likely involve airbrushing, we chose to spray deposit the dyes onto the quartz plates. For this we had to consider and anticipate the different requirements and challenges that might arise in the application, including:

  1. What is the best technique for mixing the dye solutions?
  2. What delivery system gives us even coverage and the most control?
  3. How much dye should be applied and how can we measure that?
  4. What shape should the dye film deposit be to allow repeatable color measurements?
  5. How should we mask the substrate to achieve the desired sample shape?
  6. How do we economize and reuse the substrates?

1.  Mixing: Our mixing procedure reflects the method reported by Ciba-Geigy (the manufacturer of Orasol® dyes before its acquisition by BASF in 2008) in the literature describing their product testing. [Ciba_orasol_brochure] Where Ciba’s protocol is unclear, we have standardized our method based on our experience of what works well.

The powdered dye is measured and then incorporated into a volume of solvent to create a 1% (weight to volume) solution. The solution is stirred using a magnetic stirrer for approximately one hour. After mixing, the solution rests for approximately 24 hours. During this period, undissolved dye particles settle, and afterwards the solution can be decanted into a new glass bottle.

Sample Preparation

Former project intern Ersang Ma decanting newly mixed dye into the spray bottle.

We have observed that when left in storage, the dye solutions appear to have a shelf life. In some cases we have seen changes in the color of the solution and the formation of crystalline deposits. We haven’t looked into what these changes might mean for the behavior of the solution. We have just taken them as indications that something has changed, and in response, we prepare fresh dye solutions for each round of sample production.

2.  Delivery System: We elected to apply the dye to the quartz plates using an airbrush. Airbrushing is, in general, the delivery method that permits the greatest range of expressive use of the dyes in taxidermy restoration, where controlling color value, gradation, and blending is critical to achieving a successful result. For the same reasons, it is easier to control the amount of dye deposited onto the plate using an airbrush than by brush, roller, dropper, or dipping techniques. The spray application facilitates putting down a thin, even layer, which can be gradually built up to the desired level.

during spraying

Former project intern Ersang Ma spraying dye onto a masked quartz plate.

Our dye solutions are applied to quartz plates using an Iwata Eclipse HP-BCS airbrush at 20 psi of air pressure from a compressor. Of course, having elected to use the airbrush, our samples are always prepared in a fume hood while the researcher is wearing appropriate personal protective equipment.

3.  Controlling Dye Application: It is important to control the dye application because the color produced by a medium-value application is inherently more light-sensitive than a heavy or light application of the same color. The sensitivity of the medium-value color derives from its reflectance spectrum having values that are not pinned at the low values (for very dark colors) or high values (for very light). It has also been found that for a given amount of dye loss, reflectance values around 30-40% show the largest increase. So when we spray our dye solutions on the quartz plates, we are attempting to produce samples whose reflectance spectra have minima that fall in that range. Doing so also avoids pinning large parts of the spectrum at the very high or low reflectance levels. (Specifics of reflectance spectra will be described in an upcoming post.)

However, controlling the amount of dye deposited onto the plate, even in approximate terms, presents significant challenges. Theoretically it would be possible to accurately measure the weight of the dye deposited, but adjusting one’s delivery to repeatedly match this measurement is fanciful. A more realistic approach to dealing with this uncertainty is to aim for the most sensitive application in which color change can be accurately measured and described; that is, the lightest application that is not so light as to make impossible the observation and measurement of fading.

Experiments conducted for the paint industry have demonstrated that such samples have a minimum reflectance of 30-40%; that is, in the spectrum of light reflected from the sample surface, the amount of light reflected at the most readily absorbed wavelength is 30-40%. When this condition is met, the entire spectrum will fall between the extremes of light and dark, so that there is room for it to gradually rise or fall as the colorant fades or darkens.

relfectance percentages

Mockup demonstrating how much dye corresponds to different reflectance values.

Since it can be difficult to visually gauge whether a particular dye sample on a clear plate meets these criteria, we created a set of small mockups with white backgrounds that reflect a range of minimum reflectance values (14% – 76%). These give us a sense of what each of those dye loadings look like. To arrive more precisely at the 30-40% minimum reflectance value in our samples, in the course of spraying, each sample is placed on a white membrane filter backing and measured using the spectrophotometer. More dye is added, if needed, until the desired loading is achieved.

color reading during spraying

Current project intern Caitlin Richeson measuring the percent reflectance on a freshly-sprayed quartz plate dye sample using a handheld spectrophotometer.

4.  Sample Shape: As our last post mentioned, our experimental procedure calls for taking periodic color measurements from each replicate throughout the duration of the exposure. At each time index, the values obtained from three locations on the plate are measured and averaged, to produce an overall measurement for the sample. In order to accurately calculate color change (which we will discuss in depth in an upcoming post), it is important that these three locations are reproducible, i.e., they do not change from measurement to measurement.

jig positions

Jig used to hold the quartz plate dye samples during color measurements. The samples are placed in each of the three positions for the three readings obtained using a spectrophotometer.

This requirement informed the design of a small jig with a wide T-shaped window into which the quartz plate can be inserted in any of three positions: left, right, and bottom. The spectrophotometer is placed in a fixed position atop the window. As each set of measurements is taken, the plate is moved through the three arms of the T. As long as the plate is inserted into the jig in the same orientation each time, the three measurement locations are constant. To ensure proper orientation of the quartz plates for each round of measurement, the dyes are applied to form an inverted T-shaped deposit on the plate. This irregular shape ensures the plate is properly orientated to provide the three viable measurement locations. If the plate were positioned in the jig in an incorrect orientation, at least one measurement would include an undyed area on the plate, giving the researcher an immediate cue that she has made a positioning error.

5.  Masking: A metal mask easily clips on to the plate to expose the same T-shape sample area in each application. After application, the metal mask is removed and cleaned before applying the next dye solution.

assembling samples

Assembling the bare quartz plate, metal mask, and backing material (to help see how much dye has deposited onto the clear plate) before spraying with dye.

6.  Reusing substrates: Since our quartz plates are in limited supply, their use does not end after a test cycle. After final color measurements and final photography, the plates are cleaned so that they can be reused for the next test round. Our cleaning procedure is intended to ensure that the plates are free of contaminants prior to the application of dye. Although our substrate is chemically inert, contaminants or dye degradation products can interfere with the results. Through testing and troubleshooting, a streamlined process is now in place:

Quartz Plate Cleaning Procedure:

  1. The quartz plates are first wiped with a solvent to remove grease and/or remaining dyes left on the surface from the last completed test cycle. The solvent we have chosen to use for this process is acetone, as it is effective on grease and all of the dyes.
  2. Solvent cleaning alone is not sufficient to fully remove the dye and all residues from the plates. The initial solvent cleaning step can redeposit dye in the roughened edges of the plate, where it becomes stubbornly embedded. Furthermore, we found that many dyes as they age create a thin, transparent, insoluble film on the plate – a “ghost” pattern on the surface, which accepts new dye solution differently than the virgin quartz surface. To remove these residual deposits and “ghosts,” we next polish the plates with Bueller MetaDi Monocrystalline Diamond Polish, 1 μm. The monocrystalline diamond particles are single grain particles with sharp edges. These particles are suspended in a fluid, which we can spray onto the plates and gently buff the surface of the quartz using cotton pads. The polish removes the residual dye and insoluble deposits on the plates.
  3. Next, the quartz plates are transferred to a bath of detergent and water. The detergent, Sparkleen, (Sodium Carbonate 10 to 25%, Sodium Dodecylbenzenesulfonate 1 to 10%, non-ionic detergent 1 to 10%) is a conventional laboratory glassware detergent that aids in the removal of both organic and inorganic deposits.
  4. Finally, after the quartz plates have been rinsed of the detergent, they are allowed to dry and then receive a final wipe with acetone. This final round of solvent cleaning is intended to ensure that no contaminants are left on the plates from handling. Once the plates are clean, they are ready to be sprayed with dye once again.

The preparation of the quartz plates is both time-consuming and stringent, but is an essential part of the experimental procedure.

A subset of 9 of the Orasol dye colors, dissolved in propylene glycol monomethyl ether (PGME) and airbrushed to the quartz plate substrate.



samples in box.jpeg

It’s All In the Preparation: Part 1

As earlier posts have mentioned, the first phase of our research aims to establish the lightfastness of the Orasol® and similar Sorasolve metal-complex solvent dyes in isolation‒ that is, in the absence of a binder, and without a chemically active substrate that could potentially influence the behavior of the dyes or interfere with the measurement of color change. To accomplish this we needed a substrate for the dye film that would not be altered physically or chemically by the accelerated aging exposure and would not interfere with our reflectance measurements (reflectance measurements will be discussed further in up-coming posts). The required substrate would need to be:

1.  Optically pure.

Any color or visual irregularities in a substrate would affect our color measurements, and impede an accurate calculation of the dyes’ lightfastness.

2. Durable.

The substrate needs to withstand a degree of handling throughout its use. For example, in one test cycle, the samples are measured for color change 8 times, in addition to before-, during-, and after-treatment photography.

3. Chemically inert.

The substrate must not be altered physically or chemically by the accelerated aging process, to ensure that it does not discolor (impeding accurate measurement of color change in the dye itself) or produce reaction products that could potentially alter the behavior of the dye.

Before making our final choice, we considered and rejected several candidates:

pink dye on wool

BASF dye Pink 478 (CIGN Solvent Red 127) sprayed on wool textile substrate. Although wool readily accepts dye, it was not chosen as the substrate because of its chemical instability during accelerated aging. Note also that the color of the dye is different depending on solvent. Solvent, top to bottom: acetone, ethyl acetate, ethanol, isopropanol, PGME.

Wool textile: inexpensive, readily available, and resilient to handling. It has the great benefit of accepting the dye in a manner very similar to the fur/hair on our taxidermy specimens because it is made from the same material, keratin fiber. However, it is not chemically inert, and is known to bleach or yellow during accelerated aging.

Acid-free paper: durable and inexpensive, but, like wool, is not chemically inert and may undergo color change or influence the stability of the applied dye. In addition, it accepts the dye solutions in a manner quite different from hair/fur, as they are readily absorbed deep into the sheet.

Glass slides or plates: much more chemically stable than wool or paper, though they may still produce reaction products in high temperatures and humidity. Dye applied to glass sits on the surface, similar to keratin fiber. Glass is inexpensive, but could be cleaned and reused if necessary. It is, of course, more fragile than wool or paper.

Ultimately we decided to use thin quartz plates, because they best fulfill our optical, physical, and chemical requirements for a substrate. Quartz plates consist of pure silicon dioxide (SiO2). They are not only optically pure (being transparent and colorless) and have a high damage threshold; they are also non-absorbent and reusable. However, as we came to appreciate, they are typically used in very sensitive research applications, which require high standards of dimensional exactness and chemical/optical purity. As such, they aren’t cheap. Finding affordable quartz plates was very challenging, and eventually took us to a Chinese company that was able to provide us with custom-cut plates that easily met the needs of our project, without the cost that accompanies the exacting standards required by other research applications.

Drawing on the procedure outlined in the ASTM D4303 standard, our testing of each dye solution and set of lighting conditions uses three replicate samples (A, B, and C). Two plates (A and B) are exposed in the aging chamber during the test cycle, and the third (C) is held in dark storage as a control. Throughout each test cycle, color measurements are taken periodically from each replicate. Each plate is measured in three locations, and these results are averaged to produce an overall measurement for that sample at that time index.

Having selected a transparent substrate, it was necessary for us to then identify a material to place behind our samples during our reflectance measurements and accelerated aging cycles. For the former, a standard white backing material was needed — something opaque (to eliminate any influence on the measurement from the tabletop or work surface behind this backing), and either durable or easily replaced. It would also need to be extremely white (i.e. with a uniform high reflectance throughout the visible spectrum) so that it would reflect the light transmitted through the sample back up into our reflectance spectrophotometer without distorting the spectrum of the dye. We chose to use plain white nitrocellulose membrane filters stacked three layers deep to ensure opacity. While a white ceramic tile could also have been used, we felt that the membrane filters would be more easily incorporated into the wooden jig that we are using to standardize our measurement locations.

jig with sample__1

Jig built for the project to hold quartz plate dye samples during color measurements. Note the white nitrocellulose film used to back samples.

For the same reason that a white backing material is helpful in color measurement, it would be problematic in our accelerated aging exposures: a white surface would act as a mirror, reflecting light from the xenon lamp that had already passed through the sample back up toward the plate. This would be exposing the dye films twice, once by direct exposure of the lamps, and a second time by reflected light from below, increasing the light exposure dose by some unknown percentage. This would make our determination of a rough equivalence between accelerated and real time aging periods in our dioramas more difficult. Eliminating the backing altogether would have the same effect: the plates would rest directly on our reflective aluminum sample holders. We needed to identify a material that would absorb the light transmitted through the sample plates but also would withstand the extreme environment within the accelerated aging chamber. We would need to use a black backing inside the chamber.

To realize this light-absorbing backing, we initially lined our aluminum sample holders with black archival matte board. We also added bumpers along the edges of the backing to create a small space for air circulation between the board and the plates, which helps with heat dissipation. Unfortunately, we discovered that the matte board generated a sticky condensate on the underside of the plates during aging. We altered our design to instead use black textile masks and corrugated blue board. These have proven to be free of the condensate problem of the matte board. The masks slowly fade during our exposures that include UV radiation, so we designed our sample mounts in such a way that new masks can be inserted when replacement is needed.

sample holders

Top: Dye samples resting on black backing. Bottom: Dye samples assembled in sample holder, ready for testing.

black panel_plate_holder

Clockwise: Quartz plate without dye, sample backing of black textile mask with cardboard bumpers covered in black textile mask, metal sample holder.


Part Two will describe how we prepare the quartz plate dye samples.

dyes on shelf2

The Dye Is Cast

The initial sample set undergoing accelerated aging in our Q-SUN chamber is expected to be the largest. It includes all of the Orasol dyes that we have been able to acquire to date from the manufacturer BASF and retail supplier Kremer Pigments, as well as Sorasolve dyes available from Museum Services Corporation (MSC). This post includes a listing of all of our dye samples. For a comprehensive concordance of materials by manufacturer, current and former product names, and Colour Index Generic Names (CIGN), please see the table at the end of the post.

Orasol dyes, manufactured by and available from BASF

BASF does not sell small quantities of its product directly to consumers, but samples may be requested from the company for testing purposes. Materials obtained this way are understood to be of relatively recent production.

  • Orasol® Red 330 (CIGN Solvent Red 130)
  • Orasol® Red 335 (CIGN Solvent Red 122)
  • Orasol® Red 355 (CIGN Solvent Red 119)
  • Orasol® Red 363 (CIGN Solvent Red 125)
  • Orasol® Red 365 (CIGN Solvent Red 160)
  • Orasol® Red 395 (CIGN Solvent Red 122)
  • Orasol® Red 471 (CIGN Solvent Red 118)
  • Orasol® Pink 478 (CIGN Solvent Red 127)
  • Orasol® Orange 245 (CIGN Solvent Orange 56)
  • Orasol® Orange 247 (CIGN Solvent Orange 11)
  • Orasol® Orange 251 (CIGN Solvent Orange 54)
  • Orasol® Orange 272 (CIGN Solvent Orange 99)
  • Orasol® Yellow 081 (CIGN Solvent Yellow 79)
  • Orasol® Yellow 141 (CIGN Solvent Yellow 81)
  • Orasol® Yellow 152 (CIGN Solvent Yellow 88)
  • Orasol® Yellow 157 (CIGN Solvent Yellow 82)
  • Orasol® Yellow 190 (CIGN Solvent Yellow 89)
  • Orasol® Blue 825 (CIGN Solvent Blue 67)
  • Orasol® Blue 855 (CIGN Solvent Blue 70)
  • Orasol® Brown 324 (CIGN Solvent Brown 43)
  • Orasol® Brown 326 (CIGN Solvent Brown 44)
  • Orasol® Black X45 (CIGN Solvent Black 28)
  • Orasol® Black X51 (CIGN Solvent Black 27)
  • Orasol® Black X55 (CIGN Solvent Black 29)

Orasol dyes, manufactured by BASF, and available from Kremer Pigments

Kremer sells small quantities of BASF Orasol dyes retail. To do so, they purchase dyes in bulk from BASF and warehouse the stock until it is sold. As a result, dyes purchased from Kremer have an unknown production and storage history. Orasol products listed in Kremer’s product catalog are identified using both old and newer Orasol naming systems, reflecting the name in use by the manufacturer at the time Kremer made its purchase from BASF.

  • Orasol® Red 395 (CIGN Solvent Red 122)
  • Orasol® Orange 247 (CIGN Solvent Orange 11)
  • Orasol® Yellow 152 (CIGN Solvent Yellow 88)
  • Orasol® Yellow 4GN (CIGN Solvent Yellow 146)
  • Orasol® Yellow 2RLN (CIGN Solvent Yellow 89)
  • Orasol® Blue 825 (CIGN Solvent Blue 67)
  • Orasol® Brown 324 (CIGN Solvent Brown 43)

Sorasolve dyes, manufactured/supplied by First Source Worldwide LLC, and available from Museum Services Corporation (MSC)

Museum Service Corporation’s retail product-catalog lists their metal-complex solvent dyes using the old BASF naming system for the Orasol® brand; however, the dyes are supplied to MSC under the brand name Sorasolve by First Source Worldwide LLC, an American chemical company based in Neenah, Wisconsin. Orasol® and Sorasolve dyes with the same Colour Index Generic Name share an essential colorant with the same chemical constitution.

  • Yellow 2RLN (Sorasolve/CIGN Solvent Yellow 89)
  • Yellow 4GN (Sorasolve/CIGN Solvent Yellow 146)
  • Yellow 2GLN (Sorasolve/CIGN Solvent Yellow 88)
  • Orange G (Sorasolve/CIGN Solvent Orange 11)
  • Red BL (Sorasolve/CIGN Solvent Red 122)
  • Red G (Sorasolve/CIGN Solvent Red 125)
  • Pink 5BLG (Sorasolve/CIGN Solvent Red 127)
  • Blue GN (Sorasolve/CIGN Solvent Blue 67)
  • Brown 2GL (Sorasolve/CIGN Solvent Brown 42)
  • Brown 2RL (Sorasolve/CIGN Solvent Brown 43)
  • Brown 6RL (Sorasolve/CIGN Solvent Brown 44)
  • Black CN (Sorasolve/CIGN Solvent Black 28)
  • Black RLI (Sorasolve/CIGN Solvent Black 29)

We have characterized all of these dyes using fourier transform infrared spectroscopy (FTIR). Our results confirm that samples of old and new Orasol® dyes, as well as the related Sorasolve dyes, have very similar infrared spectra (see image below).

Yellow 89

FTIR spectra for Solvent Yellow 89 samples acquired from BASF (purple line), Kremer (blue line), and MSC (red line). Note the likeness between spectra, indicating that the three dyes sold by three companies under the same CIGN are chemically very similar, if not the same.

All of these dyes are soluble in a wide selection of solvents. As mentioned previously, during dye testing conducted in conjunction with the renovation of the dioramas in the Jill and Lewis Bernard Family Hall of North American Mammals, we observed that solvent choice can have subtle effects on both the color and lightfastness of the dyes. In order to explore these effects more extensively, five different solvents were selected for our present tests. They reflect a range of properties with respect to dye solubility and volatility/evaporation rate. Among them are solvents commonly used in the conservation of art and artifacts, as well as some others used in previous testing by Ciba-Geigy. Unusually toxic solvents or solvents that present other problems precluding their general use in restoration work were excluded.

The solvents we are testing include:

  • Acetone
  • Ethyl acetate
  • Ethanol
  • Isopropanol
  • Propylene glycol monomethyl ether (PGME).

Dye sample Red BL (CIGN Solvent Red 122) purchased from Kremer. Note the difference the solvent choice makes in surface texture/coverage between the sample dissolved in acetone (left) and the same sample dissolved in PGME (right).

Dye concordance table

Concordance of dye materials by current and former product names, Colour Index Generic Names (CIGN), chemical composition, and source.


Project Conservator replacing a lamp.

Accelerated Aging Chamber, Part 2

Conservation Intern, Associate Conservator, and Project Conservator working to troubleshoot an issue with the water purification system that occurred while this post was written.

Conservation Intern, Associate Conservator, and Project Conservator working to troubleshoot an issue with the water purification system that occurred while this post was written.

Part 1 of our posts on accelerated aging instrumentation introduced the Q-SUN Xe-3 accelerated aging chamber. In this posting we describe some of the challenges we have experienced in installing and operating the machine; challenges which were unexpected and eye-opening. Problem-solving these situations has been such an important learning experience for us, demonstrating what taking on a project of this magnitude really entails.

Modifying the Lab

Our initial challenge was retrofitting the lab to accommodate the needs of the unit. In addition to electrical and plumbing adjustments to provide sufficient voltage, surge protection, purified water, and condensate drainage (all while retaining the ability to move the unit around the lab on its casters as needed), we had to install a ventilation hood over the machine with a fan and ductwork to vent its exhaust directly out of the building. This was necessary to limit the machine’s impact on the environment in the lab and adjacent offices, which otherwise became uncomfortably hot and cold respectively. The improved ventilation also allows the machine to cool itself much more efficiently, reducing both the noise and overall consumption of purified water – saving both our budget and our ears. We learned firsthand how important it is to moderate lab temperature when the HVAC system in the lab randomly failed and the machine was forced to stop because the chamber air rose to an unacceptable temperature. Luckily our maintenance staff provided the troubleshooting for this situation and the test cycle resumed within 24 hours.

Lesson: Make sure to understand completely the needs of a machine and its impact on day-today processes.

Ventilation hood installed above the Q-SUN Xe 3 chamber.

Ventilation hood and fan installed above the Q-SUN Xe 3 chamber to extract heat generated from the machine, helping maintain lab temperature.

New ductwork installed to direct exhaust from the Q-SUN out of the lab.

New ductwork installed to direct exhaust from the Q-SUN out of the lab.

Setting Test Parameters

Our next unexpected hurdle was in setting our testing parameters inside the Q-SUN (i.e. the RH, chamber air temperature, and irradiance). Our previous dye testing was undertaken following the ASTM D4303 (Method C) testing standard in a chamber that did not have the capacity to control for RH. Because our Q-SUN Xe-3 chamber can be run with RH control, we initially chose a different standard ASTM D4303 (Method D). Immediately, to our horror, we found that condensation was forming inside of the machine, dripping onto the carefully prepared samples and making them unusable.

Initial troubleshooting with Q-Lab Corporation (the Q-SUN manufacturer) focused on possible problems with sensors or calibration within the machine, but that did not solve the condensation problem. Ultimately we learned that the D4303 test Method D is outside the capabilities of the Q-SUN Xe-3 (and apparently outside the capabilities of any humidity controlled xenon arc testing chamber). This was not an intuitive conclusion since Method D is specifically written for a Humidity Controlled Xenon Arc Device. As such, we have adjusted our test parameters so that they now lie well within the capabilities of the machine, and more closely replicate the Museum’s diorama conditions that we are chiefly concerned with.

Lesson: Understand that standards are often simply guidelines to follow to provide consistent parameters for comparison. Standards can (and often, should) be adapted to meet necessary requirements.

Dealing with Malfunctions

The most recent wrinkle in our operation of this machine was the spontaneous cracking of one of the UV-blocking filters that we are using for half of the testing rounds. Though this required us to suspend our testing for a few days, Q-Lab Corporation was very quick in providing a replacement, and since then we have been able to run the unit without incident.

Crack in a portion of the glass UV filter.

Crack in a portion of the glass UV filter.

Lesson: Be flexible and ready to deal with unforeseen circumstances, and maintain a good relationship with the manufacturer of your equipment.

Budgeting for Consumables

The Q-SUN Xe-3 requires air filters, water purification filters, replacement lamps, sample preparation supplies, and many other expendable items that add cost beyond the initial purchase of the machine. Our grant budget has been adequate to deal with consumable materials, but we have realized that we must be prudent when running the machine and we must stay on top of ordering replacement supplies. There are even differences between test cycles. We are finding that our UV-filtered test cycles use up the lamps and water filters more quickly than the UV-rich test cycles.

Lesson: Pad your budget for expendable supplies and be sure to order the next set of replacements as soon as you install the first set.

Row of Q-SUN replacement lamps awaiting installation.

Row of Q-SUN replacement lamps awaiting installation.

Project Conservator replacing a lamp.

Project Conservator replacing a lamp.


Owning and operating an accelerated aging chamber, at least one as complex as the Q-SUN Xe-3, is more than a plug-and-play operation. We hope that the steepest part of the learning curve is now behind us, but past experiences have taught us to expect that new issues will present themselves as we continue to work with this machine.

Lesson: When using any new tool or taking on any new experimental analysis, be sure to build time into the project timeline for troubleshooting.

QSun Aging Chamber with Qlab training specialist Alan Boerke for size comparison.

Accelerated Aging Chamber, Part 1

Q-Lab Corporation, manufacturer of the Q-SUN Xe-3 accelerated aging chamber, promotes this machine as “the simplest, most reliable, and easiest to use full-sized xenon arc chamber available.” Before purchasing ours in February 2014, we began making upgrades to water and electrical systems in our lab to meet its basic requirements. Perhaps naively, we had planned to install the chamber and begin our testing promptly once those upgrades were complete. Throughout following months, we encountered a series of unexpected challenges in the set up and operation of our new chamber. This is the first in a pair of posts that will introduce the Q-SUN Xe-3, its capabilities and some of the theory behind its use, explore the challenges we have had, and suggest some key issues that you might consider when planning to acquire a large piece of new equipment for your laboratory.


Q-Sun Xe3 Accelerated Aging Chamber with Qlab training specialist Alan Boerke for size comparison.

Q-SUN Xe3 Accelerated Aging Chamber with Q-Lab training specialist Alan Boerke for size comparison.


Much to the disappointment of some of our curious colleagues in other departments who wondered what one does with an accelerated aging chamber, the Q-SUN Xe-3 can not be used to expedite troublesome developmental phases in your toddler, nor be run in reverse to reunite you with your youth. Too bad. Instead, this machine is used to rapidly reproduce the damage to materials that is caused by light, temperature, and humidity in real environments over longer periods of time.

The tester is a bit bigger than a refrigerator, and contains three powerful xenon arc lamps that expose samples to bright, daylight-imitating light inside of a compartment roughly the size of an oven. The spectrum of light produced can be adjusted with the installation of various filters above the sample compartment. Light output is measured in irradiance (W/m2), and can be controlled at either 340nm (ultraviolet) or 420nm (visible) depending on what filters are in use. The tester also maintains set points for relative humidity, chamber air temperature, and the temperature of a black panel placed inside the sample compartment.

Qlab training specialist Alan Boerke discusses the Qsun aging chamber with project conservators and other conservation scientists from neighboring NYC institutions.

Q-Lab training specialist Alan Boerke discusses the Q-SUN aging chamber with project conservators and other conservation scientists from neighboring NYC institutions.

On March 10, 2014 the American Museum of Natural History (AMNH) hosted a training session on accelerated aging and use of our new Q-SUN Xe-3 with Alan Boerke, Technical Sales and Training Specialist at Q-Lab Corporation. The training was attended by selected museum staff and colleagues from Yale’s Institute for the Preservation of Cultural Heritage, the Metropolitan Museum of Art, and the Museum of Modern Art, as well as students from New York University’s Institute of Fine Arts Conservation Center.

Accelerated aging makes use of the principle that exposure to high intensity light for a short time can produce deterioration similar to that caused by low intensity light over a longer time. However, in order to correctly interpret one’s results, one must understand that for many reasons, accelerated aging does not occur in a way that is strictly reciprocal. In part this is due to the inability of any aging chamber to exactly replicate every aspect of real-world exposures: wet/dry, thermal, or light/dark cycling, the spectrum of incident light, and the presence of air pollutants, dust, or adjacent materials may be impossible to simulate. This non-equivalence is also a consequence of thermal chemistry that unfolds simultaneously alongside light damage, but can’t easily be differentiated from it or accelerated proportionally.

Alan emphasized benchmarking as a way of managing this problem. To create a benchmark, materials aged in real-time are used to define the mode and extent of change taking place over a known duration. When a comparable degree of change is observed in the accelerated test, a correlation factor can be identified to be used in calculating an approximate relationship between accelerated and real-time aging. However, benchmarking has some obvious drawbacks, not the least of which is that a material that ages well may take many many years to fail in a real-world exposure environment. If one is conducting accelerated aging on that material, it’s usually because one needs information promptly and can’t afford to wait.

The success of this approach depends on the selection of a standard that exhibits deterioration behavior similar to the samples being tested- both in the real world and accelerated aging environments.  However, since the samples being tested have unknown aging behaviors one standard is usually insufficient.  So instead of choosing a single standard, it is better to select a series of standards that will hopefully bracket the behavior of the samples.  For lightfastness testing, a common set of standards is the Blue Wool scales, wool swatches dyed with eight different dyes that exhibit a range of different lightfasnesses.  By including the Blue Wool scales in our accelerated tests we can determine which of the eight standards our samples behave most similarly to.

Blue wool scale assembled by the team using blue wool reference standards 1-8 obtained from SDC Enterprises Lmtd and mounted onto card stock. A new blue wool reference scale will be used with each test round.

Blue Wool scale assembled by the team using blue wool reference standards 1-8 obtained from SDC Enterprises Lmtd and mounted onto card stock. A new Blue Wool reference scale will be used with each test round.

Our training session also included a discussion of other factors that could affect the results of our testing: the color and cleanliness of the sample, whether it is mounted at an angle, or over a backing board, and its height inside the sample compartment; variations in sample handling and measurement technique; breaks in our test cycle for sample measurement; and the age of the xenon lamps. Getting repeatable results hinges on limiting variation in these influences.

We concluded with a tutorial in which Alan showed us all the basics for running and maintaining the machine: how to load and rotate samples, install and calibrate lamps, change light filters, and program the desired parameters.

With all of this new knowledge in hand, we promptly began the process of translating our research plan into an actual method for mounting and testing our dye samples. Very quickly we observed that doing so would not simply be a matter of plugging in the Q-SUN, programming the ASTM D4303 test parameters, and pressing the ON button. Many unanticipated challenges were yet to come…

Conservation Intern Ersang Ma prepares to calibrate the Q-Sun lamps, according to procedures learned during the one-day demonstration by QLab.

Conservation intern Ersang Ma prepares to calibrate the Q-SUN lamps, according to procedures learned during the one-day training session by Q-Lab.

Special Post – Updated Team Taxidermy

Our blog posting took a short respite over the past few months, as we said a fond farewell and welcomed new members to our original Team Taxidermy.

Associate Conservator Julia Sybalsky presents a Certificate of Recognition to Conservation Pre-Program Intern Ersang Ma for her hard work during this project.

Associate conservator Julia Sybalsky presents a Certificate of Recognition to conservation pre-program intern Ersang Ma for her hard work during this project.

It was bittersweet to say goodbye and good luck to our pre-program intern Ersang Ma, who has been working with the team since summer 2014.  Ersang was an essential troubleshooter, tireless preparer of samples, and diligent manager of data.  To honor her work, Ersang was awarded an American Museum of Natural History (AMNH) Volunteer Appreciation Award at a recent Museum reception.  Ersang leaves the project to attend the Winterthur/University of Delaware Program in Art Conservation this fall.


The former associate conservator for the Natural Science Collections Conservation (NSCC) lab and the In Their True Colors project blog writer extraordinaire, Beth Nunan, left the Museum to pursue new conservation opportunities.  Thank you for all of your hard work and organization, Beth!


Former project conservator Julia Sybalsky moved into the associate conservator role for the NSCC lab.  Julia began working in the conservation lab as a graduate student intern in 2010, continued as graduate fellow, and subsequently became the project conservator.  In addition to her new duties as associate conservator for the NSCC lab, she will continue work on this project to interpret data, carry out investigations at the Yale University Institute for the Preservation of Cultural Heritage, and provide troubleshooting support.


Project Conservator Fran Ritchie (left)

Project conservator Fran Ritchie (left)

The Team welcomed new project conservator Fran Ritchie in the spring.  Fran was a previous pre-program intern in the NSCC lab (2009-2010) and has continued pursuing experiences conserving natural science collections.  Now that Fran has joined the project, she carries out analysis at AMNH and is responsible for much of the dissemination of project findings.  This dissemination will culminate in a Care & Conservation of Taxidermy workshop to be held at an upcoming Society for the Preservation of Natural History Collections (SPNHC) conference at the conclusion of the project (2017).  Exact details will be announced in future posts.


In the fall the Project will welcome Caitlin Richeson as our new pre-program intern.  Caitlin will assist with sample preparation, data interpretation, and workshop organization. It will be an exciting time as data continues to accumulate and the workshop begins to take shape.


Upcoming blog posts will get back to the project information, including how we were able to troubleshoot our new Q-SUN Xenon Test Chamber to collect our first few rounds of sample data!