Dyed Fur Samples: Part 2

Fur-Mounting System

We next needed a method of mounting the deer and fox furs so that they could be dyed and exposed in the test chamber. [See Part 1 of this series for an explanation on why we chose deer and fox furs.] Acquiring a series of meaningful color measurements from dyed fur demands a sample design that is more sophisticated than dye on quartz plate. The successful mounting system would secure a group of hairs at both ends, creating a flat sheet onto which the dye can be airbrushed. It must completely immobilize the hairs against handling, measurement, and the high rate of airflow inside the test chamber. Any loss or displacement of a dyed hair from the sample surface could be reflected as lost color in our measurements, indistinguishable from the dye fading that we are principally interested in.

In addition, the mounting system must:

  • Be compatible with deer and fox hairs of average length
  • Consistently distribute hairs across the sample to create a relatively planar surface
  • Avoid hair breakage during sample construction, accelerated aging, or measurement
  • Be made from materials that would not slump, melt, migrate, off-gas, or otherwise degrade during accelerated aging
  • Produce samples of consistent size and shape that can be used with a jig to ensure measurements are repeatable
  • Produce samples that can be handled without accidental disruption of hairs
  • Produce samples that can be secured inside the test chamber
  • Be simple and relatively quick to execute
Title/Description of Object:

Early attempts at mounting hair for research samples that were unsuccessful.  AMNH/J. Sybalsky

Our initial experiments cast a wide net. We looked at various types of clips, from binder and bulldog clips to staples and barrettes. These attachments were quick and simple to use, lacked components that would be likely to degrade, and could be adjusted to accommodate any fiber length. But we found that they produced samples that were bulky, insufficiently secure, incompatible with the measurement aperture of our spectrophotometer, or could not easily be standardized for use with a simple jig.

We explored other non-adhesive methods, employing flat materials that can be crimped or heat-sealed to trap hairs at both ends. We laid hairs on top of strips cut from nonwoven polyester and Mylar, folded the ends of each strip over the hairs, and sealed them in place. While these mounts created visually attractive, planar samples that could be made to fit into preexisting sample holders in our test chamber, the heat seal did not pinch the hairs well enough to fully immobilize them. A similar design using strips of aluminum sheet with crimped ends was more secure, with improved tightness and rigidity. They were, however, laborious to execute and would be challenging to standardize. A further adaptation using pieces of aluminum vapor-barrier tape in place of crimping made sample construction much easier, but introduced an organic adhesive. (See images above.)

Next, we looked into designs based on the concept of an embroidery hoop: we laid hairs across the open end of a cylindrical piece of steel hardware, then secured them in place using fasteners that could be wrapped and tightened around the cylinder. Stainless steel zip ties and hose clamps both held well in general, but fibers were loose around the locking mechanism in both cases. Execution was fussy, leaving fibers inconsistently distributed. (See images above.)

Fruitful discussions with several colleagues pointed us toward polyethylene sample holders designed for X-ray fluorescence (XRF) analysis of powdered samples. These holders usually consist of several separate components: a cylindrical tube or “cell,” a collar that snaps over the top of the cell, and a cap that covers the bottom end.

To mount the fur onto an XRF sample cup, a small piece is cut from the hide. The hair on the hide is brushed using an eyebrow comb to align the hairs parallel to one another. One end of the cylindrical cell is lined with Teflon sheet to act as a stable, white backing material during color measurements in case any gaps are left between hairs. The aligned hairs are carefully placed on top of the cell and immobilized by attaching the snap-on collar in a fashion similar to an embroidery hoop. Longer hairs extending from the side of the sample cup are trimmed using a scalpel. Any hairs standing proud of the sample surface and those not trapped by the sample ring are also trimmed away using scissors and tweezers.

1_1

XRF sample cup with Teflon sheet applied to the opening of the cell; the snap-on collar before applying.  AMNH/F. Ritchie

3_1

Applying combed fox hair to the Teflon-covered end of the XRF sample cup. The snap-on collar is added after positioning the hair.  AMNH/F. Ritchie

4_1

Completed fur cup samples  AMNH/F. Ritchie

We found this method of sample construction to be labor-intensive, but it allowed us to make standardized samples more successfully than any other. Nevertheless, before committing ourselves to one method over the others, a trial run in the test chamber was in order. We subjected our two favorite mounting systems, the XRF sample cups and the aluminum sheet and barrier tape, to 600 hours of accelerated aging at 0.35 W/m2, 55% RH, 63ºC black panel temperature, and 48ºC chamber air temperature. Both systems held up to the environment and blowers well. There was no evidence of creep or adhesive migration in the aluminum mounts. In both systems, a few underfur fibers were stirred up above the sample surface by airflow inside the chamber, demonstrating the importance of early removal of fibers inclined to dislodge. This can be accomplished through application of gentle friction or canned air to the sample followed by cutting or tweezing away any loose hairs.

Because of the importance of producing samples of consistent size and shape, we ultimately adopted the mounting method based on the XRF sample cup. A selection of XRF sample cups with different dimensions and features was subsequently tested with our furs. Some were more compatible with the length of our fibers than others, and smaller cups gave us greater control over the distribution of fibers. Among the examples we tested, we felt that the Chemplex SpectroCertified Quality XRF Sample Cup No 3115 worked best.

In total, 300 sample cups were constructed (150 with fox, 150 with deer) and will be used for testing. Future blog posts will describe the testing methods and results.

Caitlin making fur cup

Project intern Caitlin Richeson preparing fur cup samples using fox hair.  AMNH/F. Ritchie

Advertisements

Dyed Fur Samples: Part 1

The first phase of our lightfastness testing aimed to establish the lightfastness of the Orasol® and similar Sorasolve metal-complex solvent dyes in isolation‒ that is, in the absence of a binder, and without a chemically active substrate that could potentially influence the behavior of the dyes or interfere with the measurement of color change. (See earlier posts to explain the project plan and selected dyes. Future posts will explain the results of this testing, which is currently underway.)

The second phase of testing uses accelerated aging and periodic color measurements to look at how lightfastness is affected when Orasol dyes are applied to aged, faded furs as they are used in a recoloring treatment. We expect to see substrate impacts on lightfastness for several reasons:

  • As furs age, they produce reaction products that may affect the chemical behavior of an applied dye.
  • Compared to quartz, dyes deposit very differently onto hair. There is also significant variation among fresh and aged fiber surfaces, and among fibers from different animals.
  • The optical properties of dyed fibers differ from those of dye films on quartz. Differences in how the sample reflects and/or absorbs incident light affects its total light exposure dose and its apparent color.

Fur Selection

Several considerations played an important role in our selection of animal fur substrates. First, we sought furs that are light in color. The principle reason for this was that a light-colored substrate was needed to control our dye application and keep reflectance spectra minima in the range of 30–40 percent (see earlier post for reflectance discussion). For consistency of samples, the furs also needed to be as uniform in color as possible. To facilitate sample mounting, longer fibers were preferred over short. The fibers themselves should present minimal color change upon exposure to accelerated aging, ensuring that the dye (and not the fiber) is the primary contributor to any color change observed in a dyed fiber. Finally, we aimed to represent some of the naturally occurring variation in mammal furs, from hollow guard hairs and bristles to awns and underfur.

arctic fox skin

Arctic fox skin used for research samples.  AMNH/F. Ritchie

We ultimately chose furs from two animals with naturally white coats: an arctic fox and a white-tailed deer. The latter is fully white but not a true albino, a variation selectively bred to be whiter than the closely related “spotted” piebald. The arctic fox represents fine, smooth-haired fur-bearing mammals, while the deer offers hollow guard hairs.

However, there is an important downside to using white furs such as these. As we pointed out in our discussion of backing materials for our samples on quartz, light-colored substrates reflect and scatter proportionately more light than dark ones. Transparent dye films applied to highly light-scattering substrates will be exposed twice: once directly by the lamps, and a second time by reflected light from below, increasing the light-exposure dose. While faded historic taxidermy may be light in color, most examples are generally still darker than these bright white furs.

deer hide

White-tailed deer hide used for research samples.  AMNH/F. Ritchie

Consequently, light-scattering plays a larger role in the fading of our samples than is expected in the treatment that we are modeling. While it could be argued that our samples represent a worst-case scenario with respect to the impact of specimen color on the longevity of recoloring treatment, we acknowledge that the use of white furs is a compromise needed to consistently produce the most light-sensitive dye application possible.

Tanning

The impact of different tanning methods on the dyes under investigation is unknown and offers an interesting avenue for further research, but this is not addressed as part of our current project. Nevertheless, in order that they more closely model taxidermy in the American Museum of Natural History collection, the fox and deer pelts for this project were tanned according to methods representative of those historically used at the Museum.

leathers

Scraps of leathers prepared using different techniques and finishes. The type of tan can affect the condition of a taxidermy mount overtime.  AMNH/F. Ritchie

When considering the production and acquisition of historical taxidermy at the Museum, particularly for use in dioramas, the period of interest spans from approximately 1925 to 1965. Though we do not have a complete understanding of all the tanning methods in use at, and for, the Museum during this 40-year time frame, we were able to partner with a local tanner trained by Sinclair Clark, a renowned tanner who was on staff at the Museum around 1924–1927. Clark later set up tanneries in other locations, but maintained his relationship with the Museum tannery over a long period of time.

In general terms, Clark’s method involves the following:

  • The skin is salted to remove moisture and stabilize it prior to tanning
  • Tanning begins with rehydration in a saltwater bath until the skin is soft and pliable
  • It is next soaked in an acid pickle until swollen, and then shaved down on a fleshing machine or by hand
  • The skin is returned to the pickle, and, if needed, shaved again
  • The skin is then removed from the pickle and the acid is neutralized
  • Warmed oil is applied either by hand or with a “kicking” machine
  • The skin is left to sit overnight or for one day before being tumbled in hardwood sawdust until dry and soft
deer hide cross section

Cross section of the white-tailed deer hide used for the research samples.  AMNH/F. Ritchie

The upcoming Part 2 post will describe how we are mounting the furs to run as research samples.